
Towards a Theory for Cyber-Physical Systems Modeling

Gabor Simko
Vanderbilt University

Nashville, TN 37212 USA

Tihamer Levendovszky
Vanderbilt University

Nashville, TN 37212 USA

Miklos Maroti
Vanderbilt University

Nashville, TN 37212 USA

Janos Sztipanovits
Vanderbilt University

Nashville, TN 37212 USA

ABSTRACT
Modeling the heterogeneous composition of physical, com-
putational and communication systems is an important chal-
lenge in engineering Cyber-Physical Systems (CPS), where
the major sources of heterogeneity are causality, time se-
mantics, and different physical domains. Classical phys-
ical laws capture acausal continuous-time dynamics, thus
the behavior of physical systems are inherently character-
ized by acausal continuous-time equations. On the other
hand, computational and communication systems are based
on the notion of causality and discrete-time semantics. Con-
necting the two worlds is challenging, and calls for proper
formalization of the composition. In this paper, we discuss
a formalism that captures both acausal physical laws, unidi-
rectional analog signals, and is capable of describing causal
computational systems, as well as the composition of CPS
models.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]:
real-time and embedded Systems; F.1.1 [Computation by
Abstract Devices]: Models of Computation – cyber-physical
systems; I.6.5 [Simulation and Modeling]: Model Devel-
opment[models cyber-physical interactions]; J.2 [Physical
Sciences and Engineering]: Engineering

General Terms
Theory, Design

Keywords
Cyber-Physical Systems, formalization, Model-Based Engi-
neering, heterogeneous composition

1. INTRODUCTION
In component based engineering compositionality means

that properties of a system can be inferred from the proper-
ties of its constituent components and the interaction model

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CyPhy ’13 Philadelphia USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

used for connecting the components. Recently, numerous
compositional environments were introduced for modeling
computational systems [2,11]. Synchronization and schedul-
ing of components are the most important questions con-
cerning the interaction models for computational systems.
One of the prominent trends for tackling these problems is
based on the hierarchical composition of various interaction
models, called Models of Computation (MoC) [11, 12]. An
MoC is a model describing the semantics of interactions.
Well-known examples are the process network, dataflow,
petri-net, finite-state machine, and others.

A different approach is the characterization of different
interaction types, such as rendezvous, broadcast, atomic
broadcast, priority. Bliudze and Sifakis [5] introduce an
algebra for describing these interaction types, that is im-
plemented in the BIP framework [2].

The interaction models of physical systems, however, raise
different questions. Here synchronization and scheduling are
out of questions, and the main concern is the semantics of
interactions: what are the consequences of a connection on
the behavior of the components and the system. Unlike in
computational systems, the semantics of physical interac-
tions are not freely choosable. Rather the semantics of the
interaction model must reflect the physical reality.

Recently acausal physical modeling has gained traction
[10, 14, 18, 23], and got accepted as the de facto standard
for physical modeling. In this model, the acausal nature
of physics is faithfully reflected, and the physical laws are
directly represented in their mathematical form. This is a
remarkable difference compared to the classical system the-
ory based modeling that was inherently causality based.

While acausal modeling is more appropriate from a phys-
ical point of view [23], it also brings new challenges. Most
importantly, the semantics of acausal interaction is not lo-
cal: it is not only dependent on the connected components,
but transitively dependent upon a chain of interconnections.

Cyber-Physical Systems (CPS) are the integration of com-
putational and physical systems. In this paper we develop
a formalism for discussing CPS systems that are based on
energy-flow based acausal physical modeling, but which also
contains unidirectional physical signals and computational
interactions. CPS systems are heterogeneous, software in-
tegrated physical systems, where heterogeneity emerges in
several aspects: CPS are heterogeneous in physical domains
(multi-domain physics), abstraction levels (physical systems,
communication and computational systems), timing seman-
tics (continuous-time, discrete-time and logical time), and in
the mathematical apparatus (differential algebraic equations

vs transition systems) used to describe them.
Already, there are several modeling environments for CPS

that tremendously helps the creation of CPS systems, but it
is the best interest of the CPS community to further enhance
the experience. In particular, one of the most promising
and exciting step is the support for multi-modeling, where
the different modeling aspects of a system do not live in-
dependent from each other. In multi-modeling, lumped pa-
rameter physical modeling, CAD modeling, FEA (finite el-
ement analysis) simulations, computational and communi-
cation system modeling are integrated in such a way, that
reasoning about the overall system becomes possible.

In the spirit of component-based engineering, we should
consider such a multi-modeling environment as the compo-
sition of heterogeneous components coming from heteroge-
neous languages and tools. By understanding the cross-
interactions between them, the multi-modeling vision could
become a reality.

Our main goal is to facilitate the correct-by-construction
modeling of CPS systems. This means that the modeling
environment provides mechanisms for ensuring that struc-
turally well-formed models of the language are structurally
feasible: port connections are semantically matched (e.g.
only compatible ports are connected), different models have
the same view of the parameters (e.g. for a parameterized
pipe the length parameter of the pipe is the same for the
lumped-parameter and the FEA simulations). Further, as
a future work we plan to extend the formalism to make de-
ductions on the solvability (existentiality and uniqueness) of
models based on their structure. On the other hand, we do
not discuss model fidelity, i.e. how close the behavior of the
model is to the behavior of the modeled system.

Our formalism addresses a subset of the multi-modeling
environment, the interaction of lumped parameter physi-
cal modeling and computational systems modeling. Even
though this is a small subset, it is an important cornerstone
for CPS modeling.

There is a strong reason for being formal: avoiding am-
biguities. Integration of domain-specific CPS languages calls
for the unambiguous understanding and specification of these
languages. Misunderstanding can result in faulty or incor-
rect designs, which do not meet the design requirements. Es-
pecially in CPS, which is often safety- and mission-critical,
we cannot afford such design flaws.

Our contribution and the primary focus of the paper is
the generalization of CPS models’ behavior, and the devel-
opment of a theory for composing CPS models from acausal
and causal components. Currently, we focus on the acausal
and causal physical connections, and leave the details of the
interconnection of physical and computational systems for
the future.

The structure of the paper is the following: Section 2
introduces the related work. In Section 3 we introduce our
formalism and define the semantics for physical interconnec-
tions. In Section 5 the formalism is discussed with respect to
some of the state of the art physical modeling environments.
Finally, in Section 6 we conclude.

2. RELATED WORK
For physical system modeling, Willems [23] provides an

excellent introduction showing the necessity of acausal mod-
eling. A well-known and widely-used multi-domain acausal
modeling paradigm is the theory of bond graphs [14], which

supports the composition of physical models from the me-
chanical, electrical, thermal, hydraulic and magnetic do-
mains. Modelica [10] is a standardized language for describ-
ing multi-domain physics and computational systems. While
there are industrial strength tools supporting the language,
the complete formalization of Modelica is lacking. Nonethe-
less, there are several attempts for the partial formalization
of Modelica.

K̊agedal and Fritzson [13] describes a formal semantics for
the Modelica language using natural semantics. They use
the RML compiler generator to generate executable imple-
mentation based on the semantic specifications. While the
RML specification also contains specifications for instance
creation, Mauss [19] argues that for a human reader a pro-
cedural view of Modelica instant creation is more helpful.
Broman [7] discusses the type system of Modelica, and con-
cludes that the Modelica type system is too informal, and
needs proper formalization in the future.

A different direction for equation-based modeling is the
usage of functional languages, that naturally lends itself
to higher-order and structurally dynamic modeling. Bro-
man and Nilsson [8] introduce a node-based connection se-
mantics for equation based object-oriented (EOO) modeling
languages, and they introduce a prototype implementation
called the Modeling Kernel Language (MKL). They argue
that the node-based approach solves the problem of connec-
tion semantics in functional EOO languages. Another func-
tional paradigm is the Functional Hybrid Modeling (FHM)
[22] that is the foundation for Hydra, a declarative non-
causal modeling language supporting dynamic structures.
Nilsson [21] introduced a type-based structural analysis for
FHM, but the idea is applicable to other equation-based lan-
guages as well. Such a type system can be used for arguing
about the solvability of the equations.

For computational system, BIP (Behavior, Interaction and
Priority) [2] is a framework developed at VERIMAG, which
supports the composition of computational systems by ab-
stracting interactions. Synchronous and asynchronous, ren-
dezvous and broadcast interactions are provided by the BIP
language, allowing the expression of all kinds of computa-
tional interactions. Bliudze and Sifakis [5] introduce the
algebra for BIP connectors and interactions, and they de-
fine [6] the SOS style formalization of glue operators as well.

Ptolemy [11,12] is a hybrid framework built upon the no-
tion of actors and directors. Actors are components, whose
interactions is controlled by the directors. Directors imple-
ment different Model of Computations (MoC), e.g. finite-
state machines, synchronous and dynamic data flows, pro-
cess networks, discrete events, continuous-time and synchronous-
reactive systems. The semantics of Ptolemy is explained by
the actor abstract semantics [16]. Being a hybrid frame-
work Ptolemy provides a continuous-time director, however
acausal modeling is not supported.

3. CYBER-PHYSICAL SYSTEMS
In this section we introduce a formalism that can be used

for modeling acausal CPS languages. Our model builds on
several well-known formalism such as the interface theory [1]
and the tagged signal model [15]. The formalism provides
support for acausal physical modeling, analog signal inter-
actions and computational interactions.

3.1 Variables
Given a set of tags T and set of values V , an event e ∈

T × V is defined as a pair of tag and value. Let ⊥ /∈ V
be a special value denoting the absence of value, and V ⊥ =
V ∪ {⊥}.

A variable x is a named entity with tag set Tx and value
set Vx. A trajectory ν : Tx → Vx of variable x is a (total)
functional relation between tags and values. The set of all
trajectories Γx is then

Γx = (V ⊥x)Tx

Further, we write T (ν) to denote the set T (ν) = {t | ν(t) 6=
⊥}, i.e. the tags at which the trajectory has a defined (non-
absent) value.

Given a set of variables X = {x1, ..., xn}, WX =
∏
x∈X Γx

is the tuple of all the possible trajectories for its variables.
Clearly, we can decompose any trajectory w ∈ WX to its
constituents: let wx ∈ Γx denote the trajectory of variable
x ∈ X in w.

Given a trajectory w ∈WX and a set of variables Y ⊆ X,
we define πY (w) to be the projection of w onto Y . Formally,
πY (w) =

∏
y∈Y wy.

We can distinguish different types of variables based on
their tag set, value set and their physical interpretation. For
simplicity, in the following we assume that the value set Vx
for all variables is the set of real numbers, and we distinguish
the following variable types:

• Xp is a set of physical variables denoting physical quan-
tities. Their tag set T = R is the real numbers, their
trajectory are everywhere defined T (ν) = R for any
x ∈ Xp and ν ∈ Γx, and they are always valued over
the reals V = R. Further, in a more detailed model
we would distinguish electrical, mechanical, and other
physical variables.

• Xc is a set of computational (discrete-event) variables.
The tag set for these variables is arbitrary (e.g. T = N
for synchronous/reactive systems or T = R × N for
discrete-event systems), as long as T (ν) for any x ∈ Xc
and ν ∈ Γx is order-isomorphic to a subset of integers
[15].

Note that computational variables that are interpreted
over the physical time may take several values at any given
physical time instant. In order to represent the causality of
these values, the tag set is often enriched to represent steps.
For example, super-dense time [16,17] defines the tag set for
discrete-events as R×N, and non-standard real time ∗R [3])
enriches the physical real time by infinitesimal time steps.

3.2 Ports
A port p = {x1, ..., xn} is a finite set of variables. Ports are

typed according to the variables they consists of, and port
types have well-formedness rules that describe the variables
that can live on that port. In the following, we distinguish
the following primitive port types:

• power port p = 〈x, y〉 is a pair of physical variables
x ∈ Xp and y ∈ Xp. We call the first component x the
effort variable, and the second component y the flow
variable (in some environments they are called across
and through variables). The physical interpretation of
these variables are modeling environment and physical
domain dependent.

• physical signal port p = {x} is a singleton set of phys-
ical variable x ∈ Xp, that we call a signal variable.

• computational port p = {x} is a singleton set of com-
putational variable x ∈ Xc.

There are no other primitive port types. Note that based on
these port types we could define compound ports, however,
we leave this as a future work. In the following, we write
PP for power ports, PS for physical signal ports and PC for
computational ports.

In the following, we assume an infinite pool of variables
X∗ that denotes all the possible variables in the system, and
an infinite pool of ports P ∗ that are partitions over X∗. I.e.
p ∈ P ∗, q ∈ P ∗ and p 6= q implies p ∩ q = ∅.

3.3 Components
A CPS process is characterized by a set of physical and

computational variables and their possible trajectories over
time. A CPS component is a structure for CPS processes,
that defines an interface (a set of ports) through which the
component interacts with its environment. Thus, a CPS
component is a set of variables and ports, and their behavior
over time.

Definition 1. A CPS component C = 〈X,P,Beh〉 con-
sists of the following:

• a finite set of variables X = {X1, . . . , Xn},

• a finite set of non-overlapping ports P ⊆ 2X , where
port p ∈ P denotes a set of variables that can be ob-
served through it,

• a set of behaviors Beh ⊆WX .

Intuitively, the behaviors Beh of a CPS component is a
set of trajectories that contains all the allowed evolutions of
its variables. Equivalently, the behavior of a component can
be represented as a finite or infinite set of constraints Θ.

Definition 2. The behavioral constraints Θ of a CPS
component is a finite or infinite set of first-order sentences
(i.e. they contain no free variables), for which Beh = {x ∈
WX | x |= Θ}, where |= is a relation that captures that tra-
jectory x satisfies each formula θ ∈ Θ.

3.4 Composition
We assume a set of atomic CPS components that are pre-

defined. Compounds CPS components are then composed
from atomic components and other compound components
by means of two operators, composition and connection.

Definition 3. Two components are compatible if and only
if their variables are non-overlapping. Formally, component
A and B are compatible iff

XA ∩XB = ∅

Definition 4. Parallel composition A ‖ B of compatible
components A and B is the interaction-free composition of A
and B defined as the set-theoretical union of their structures,
and its behavior is the cross-product of the behaviors of A
and B:

A ‖ B = 〈XA ∪XB , PA ∪ PB , BehA ×BehB〉

(a) Parallel composition of C1 ‖ C2

(b) Connection and port hiding by C · θ

Figure 1: Operators of component composition.

The parallel composition operator is shown in Fig. 1(a).
Alternatively, the behavioral constraints of their parallel

composition A ‖ B is the conjunction of their behavioral
constraints:

BehA‖B = {x ∈WXA∪XB | x |= ΘA ∧ΘB} (1)

Lemma 1. Composition is associative and commutative,
thus A ‖ B = B ‖ A and (A ‖ B) ‖ C = A ‖ (B ‖ C).

Definition 5. An interconnection θ ⊆ P∗ × P∗ is a set
of port pairs, where P∗ denotes all the ports of the system.

However, not all interconnections are well-formed. There-
fore, we need a definition for well-formed interconnections.

Definition 6. A well-formed interconnection θ ⊆ P∗ ×
P∗ contains only compatible connections, i.e. physical ports
to physical ports, signal ports to signal ports and computa-
tional ports to computational ports, and θ does not connect
any port to itself.

Definition 7. The external ports ECθ of a component C
and interconnection θ is a set of ports that are elements of
the interconnection but not the component. Formally,

ECθ = {x ∈ P ∗ | x /∈ PC ∧ ∃y ∈ PC .〈x, y〉 ∈ θ or 〈y, x〉 ∈ θ}))

Definition 8. The connection C ·θ of a component C by
a well-formed interconnection θ is defined as follows:

C · θ = 〈X ∪ E,ECθ, BehC·θ〉

where E = {x | x ∈ ECθ} is the set of external variables,
and the behavior is defined as follows:

BehC·θ = {x ∈WE | ∃y ∈WX∪E . πE(y) = x and

y |= ΘC ∧ θI}

where θI is a set of formula describing the interpretation
for the interconnections, and π denotes projection as defined
above.

The behavior BehC·θ of compound component contains ex-
actly those trajectories whose projection to C are trajecto-
ries of BehC , and that fulfill the interpretations of connec-
tions. Note that the trajectories of variables belonging to
unconnected ports are unconstrained from outside (except
for the flow variables which are zero according to the inter-
pretation of power connections). The connection operator is
shown in Fig. 1(b).

Observe that the ports of the original components are hid-
den in the new component. The reason for this is found in
the semantics of physical interconnections. In order to for-
mulate the equations for a physical port, we need all its
interconnections. If we do not hide the ports of the original
component, additional interconnections could be established
to them, and therefore the interpretation for the connections
cannot be encapsulated in the component. If we hide the
original ports, the external port variables are still depen-
dent on the environment, but they create a barrier between
the internal variables and the environment.

4. INTERPRETATION OF CONNECTIONS
So far we defined operators that allow the hierarchical

composition of components, however we deliberately left out
the details of the interpretation of connections. The reason
being that for different combinations of ports/variables, the
interconnections have different semantics as discussed below.

In the following, we only deal with well-formed connec-
tions, where only compatible ports are interconnected. Note
that heterogeneous connections can be modelled by intercon-
necting heterogeneous ports through auxiliary components
that perform the semantic matching between them.

Based on the definition, a well-formed connection θ is the
disjoint union of θP , θS and θC , where θP ⊆ PP ×PP is the
set of power connections, θS ⊆ PS×PS is the set of physical
signal connections, θC ⊆ PC×PC is the set of computational
connections.

Power connections
For physical connections, the semantics is defined by variable
sharing across the connector. A physical connector is a set of
ports, whose members are defined by the transitive closure of
their connections. The set of connectors θ∗P is the transitive
closure of port connections θP , given as the least fixed point
solution for the following equations:

p ∈ PP =⇒ (p, p) ∈ θ∗P (reflexivity)
(p, p′) ∈ θP =⇒ (p, p′) ∈ θ∗P ∧ (p′, p) ∈ θ∗P (symmetry)
(p, p′) ∈ θ∗P ∧ (p′, p′′) ∈ θ∗P =⇒ (p, p′′) ∈ θ∗P (transitivity)

Therefore, {p′ | (p, p′) ∈ θ∗P } denotes the physical connector
containing port p. Next, define a sgn function as follows:

sgn(p) =

{
−1 if p is external port

1 otherwise
(2)

The interpretation for physical connections are then:

θIP =
∧

(p,p’)∈θP

p1(t) = p′1(t) (3)

and

θIP =
∧
p∈PP

 ∑
〈p,p′〉∈θ∗

P

sgn(p′) · p′2

 (t) = 0 (4)

for any t ∈ R, where p1 and p2 denote the first and second
component of the power port, and function (

∑
f) is defined

by (
∑
f)(t) =

∑
f(t).

Note that Eq. 3 describes an acausal constraint (i.e. p1
determines p′1 and p′1 determines p1). Such acausality is an
important property of physical systems [14].

Physical Signal and Computational Connections
The semantics of physical signal and computational connec-
tion is variable assignment, i.e. the value of the source port
is assigned to the destination port at every time they are
defined. Given the set of connections SC = θS ∪ θC , their
interpretation is defined by the following equation:

SCI =
∧

〈p,p′〉∈SC

〈t, v〉 ∈ p and v 6= ⊥ =⇒ 〈ϕ(t), v〉 ∈ p′

(5)
for all t ∈ T (where T is the tag set for the connected vari-
ables), where ϕ is a function for expressing causality (in this
paper we do not develop the idea, however it can be used for
defining an ordering of events). In this work, we can assume
that ϕ(x) = x is the identity function. Note that here we
assume that only ports with the same tag sets are intercon-
nected, it remains a further work to examine heterogeneous
connections.

Unlike the acausal equation for power connections, Eq.
5 represents a causal dependency. This allows p′ to take
any values when p is absent, which enables signal multiplex-
ing (however note that multiplexing needs heterogeneous tag
sets).

An algebraic loop is a directed cycle that does not con-
tain any integrators or delays. The semantics of such loops
needs further elaboration, since algebraic loops may have no
solution or multiple solutions, furthermore they lead to situ-
ations when a variable has multiple values at a given physical
time instant. There are three ways to tackle the problem:
(i) prohibit algebraic loops (e.g. LUSTRE [4]), (ii) define
the non-deterministic semantics by allowing any values that
satisfy the loop equations (e.g. the SIGNAL language [4]),
(iii) develop the Scott semantics of the language, and define
its semantics as the least fixed point solution for the loop
(e.g. ESTEREL [4], Ptolemy).

5. DIFFERENCES IN MODELING ENVIRON-
MENTS

Most of the physical and CPS modeling environments are
based on graphical network models that use hierarchical
composition of components. Such a hierarchy can be repre-
sented using our formalism, even though a lot of details must
be abstracted away. What concerns us more is that there are
major differences between different modeling environments
in the representation of the behavior and the interpretation
of their physical variables. In this section, we discuss some
of the variants for these differences.

5.1 Behavioral Model
The behaviors of physical lumped parameter models are

often represented as a set of differential algebraic equations.
Such paradigm is followed by Modelica [10] and Simscape
[18], where the behavior of the components are described
using a textual language for differential algebraic equations
(DAEs).

A different path is followed in bond graphs modeling [14],
where the behaviors of the basic components are implicit,
and are determined by the type of the component. In the
most basic bond graph language, nine components are dis-
tinguished, seven of which represent different behavioral equa-
tions, and two are topological configurations.

On the computational part, Simscape is integrated with
Matlab Simulink, which means that its computational be-
havior is described by stateflow, Matlab scripts, and exter-
nal imperative languages such as C and Java. Modelica has
a simple built-in imperative language that can be used for
describing simple controllers, but it also provides an inter-
face for interacting with external languages. Bond graph
does not define any computational models, but a bond graph
variant, the hybrid bond graphs [20] were defined together
with a simple automata language.

5.2 Interpretation for Physical Variables
Modeling environments use different interpretations for

the physical variables. In Modelica connectors are used
for connecting Modelica models. For physical connections,
a connector is a set of continuous-time variables, some of
which are marked as flow. Unmarked continuous-time vari-
ables are assumed to be potential variables. Since in our
formalism we did not define how aggregated (non-primitive)
ports can be built, we consider only the simplest connectors
in Modelica: connectors that are composed of a potential
and a flow variable. The semantics of such connections are
similar to the model we formalized in the paper. However,
it remains a future work to prove this, as well as to discuss
the behavior of input and output ports of Modelica.

The semantics for Simscape is very similar, however, the
physical variables are called across-variables and through-
variables. In mechanical domains, through-variables are ef-
fort type, and the across-variables are flow type variables.
In non-mechanical domains, the across-variables are effort
type, and the through-variables are flow type variables.

Bond graphs define effort and flow variables for repre-
senting physical quantities. However, the interpretation of
these variables are different from other modeling environ-
ments. For example, Modelica uses flanges for describing
translational mechanical systems, where flanges are connec-
tors built from a force and a position variable. In contrast,
the quantities of the translational mechanical domain in
bond graphs is force and velocity. Further, bond graphs use
voltage-difference and current in electrical domains, while
Modelica is based on electrical pins that use voltage and
current. Such semantic differences must be accounted for
when composing different modeling languages.

In bond graphs each bond defines a connection between
exactly two components with the meaning the efforts are
equal on both ends of the bond, and whatever flows in on
one end of the bond must flow out on the other end. For
representing topology, bond graphs define two types of junc-
tions, one-junction and zero-junction, whose behavior define
the topological constraints for the effort and flow variables.

We can explain the semantics of bond graphs with the
model we presented in this paper, we only need to model
the junctions as components with a predefined behavior (of
course this is not a new idea, e.g. [9]):

• A one-junction with n bonds is a component which
has 2n physical variables partitioned into n physical
power ports. The behaviors of the component is all

the trajectories over the variables where all the effort
variables are equal, and the flow variables sum up to
zero.

• A zero-junction with n bonds is a component which
has 2n physical variables partitioned into n physical
power ports. The behaviors of the component is all
the trajectories over the variables where all the flow
variables are equal, and the effort variables sum up to
zero.

Notice that in this model each bond graph node is modelled
with a component, each bond is modelled with an intercon-
nection and each port of the components are connected with
exactly one another port.

6. CONCLUSION
In this paper we have defined a formalism for discussing

the generic CPS modeling concepts used for system integra-
tion. Our intention is not to define a framework that can be
used for describing every aspect of CPS modeling languages.
Rather, we consider it as a language that can be used for
discussing a small but important portion of the behavioral
semantics of CPS languages. Further, we consider it as a
tool for comparing different variants, and a model that can
be used for further investigations in CPS design. As shown
in the related work, there are different alternatives to the
component-based approach that do not fit into the world of
our model. It needs further work to determine the applica-
bility and usability of our approach.

Clearly, our model needs a great deal of work to under-
stand the continuous-time and discrete-time cross interac-
tions. As a next step we plan to investigate how the discrete-
time world fits into the framework. Furthermore, we can ex-
tend the model in several ways. For example, by attaching
dependencies to the variables of the components, we plan to
perform dependency analysis, that can be used for causal-
ity analysis and fault propagation analysis. Also, we plan
to examine how the model can be extended so that we can
structurally ensure the existence of a model behavior, as well
as the uniqueness of its behavior.

ACKNOWLEDGEMENT
We are very grateful for the useful suggestions of the anony-
mous reviewers. This work was supported by the National
Science Foundation under grant number CNS-1035655 and
by the European Union and the European Social Fund through
project FuturICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-
2012-0013).

7. REFERENCES
[1] L. D. Alfaro and T. Henzinger. Interface theories for

component-based design. EMSOFT, 2001.

[2] A. Basu, M. Bozga, and J. Sifakis. Modeling
heterogeneous real-time components in BIP. In SEFM,
pages 3–12, 2006.

[3] A. Benveniste, T. Bourke, B. Caillaud, and M. Pouzet.
Non-standard semantics of hybrid systems modelers.
Journal of Computer and System Sciences, 2011.

[4] A. Benveniste, P. Caspi, S. A. Edwards,
N. Halbwachs, P. Le Guernic, and R. De Simone. The
synchronous languages 12 years later. Proceedings of
the IEEE, 91(1):64–83, 2003.

[5] S. Bliudze and J. Sifakis. The algebra of connectors –
structuring interaction in BIP. IEEE Trans.
Computers, 57:1315–1330, 2008.

[6] S. Bliudze and J. Sifakis. A notion of glue
expressiveness for component-based systems.
CONCUR, pages 508–522, 2008.

[7] D. Broman, P. Fritzson, and S. Furic. Types in the
modelica language. In International Modelica
Conference, pages 303–315, 2006.

[8] D. Broman and H. Nilsson. Node-based connection
semantics for equation-based object-oriented modeling
languages. Practical Aspects of Declarative Languages,
pages 258–272, 2012.

[9] F. E. Cellier and À. Nebot. The modelica bond graph
library. In International Modelica Conference, 2005.

[10] P. Fritzson and V. Engelson. Modelica—A unified
object-oriented language for system modeling and
simulation. ECOOP, page 67–90, 1998.

[11] A. Goderis, C. Brooks, I. Altintas, E. Lee, and
C. Goble. Composing different models of computation
in kepler and ptolemy II. In ICCS, volume 4489, pages
182–190. Springer Berlin / Heidelberg, 2007.

[12] A. Goderis, C. Brooks, I. Altintas, E. A. Lee, and
C. Goble. Heterogeneous composition of models of
computation. Future Generation Computer Systems,
25(5):552–560, May 2009.

[13] D. K̊agedal and P. Fritzson. Generating a modelica
compiler from natural semantics specifications. In
SCSC, pages 299–307, 1998.

[14] D. Karnopp, D. Margolis, and R. Rosenberg. System
dynamics: modeling and simulation of mechatronic
systems. Wiley, New York, 1997.

[15] E. A. Lee and A. Sangiovanni-Vincentelli. A
framework for comparing models of computation.
IEEE Trans. Computer-Aided Design, 17:1217–1229,
1998.

[16] E. A. Lee and H. Zheng. Leveraging synchronous
language principles for heterogeneous modeling and
design of embedded systems. In EMSOFT, pages
114–123, 2007.

[17] O. Maler, Z. Manna, and A. Pnueli. From timed to
hybrid systems. In Real-Time: Theory in Practice,
pages 447–484. Springer, 1992.

[18] MathWorks. Simscape, Nov. 2012.

[19] J. Mauss. Modelica instance creation. In International
Modelica Conference, 2005.

[20] P. Mosterman and G. Biswas. A theory of
discontinuities in physical system models. Journal of
the Franklin Institute, 335(3):401–439, 1998.

[21] H. Nilsson. Type-based structural analysis for modular
systems of equations. In EOOLT, pages 71–81, 2008.

[22] H. Nilsson, J. Peterson, and P. Hudak. Functional
hybrid modeling. Practical Aspects of Declarative
Languages, pages 376–390, 2003.

[23] J. Willems. The behavioral approach to open and
interconnected systems. IEEE Control Systems,
27(6):46 –99, Dec. 2007.

